home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Multimedia Differential Equations
/
Multimedia Differential Equations.ISO
/
diff
/
chapter5.1p
< prev
next >
Wrap
Text File
|
1996-08-13
|
9KB
|
343 lines
à 5.1èReal Roots-Third Order, Lïear, Constant Coefficient
èè Differential Equation
äèFïd ê general solution
â y»»» - 6y»» + 11y» - 6y = 0
The characteristic equation
mÄ - 6mì + 11m - 6 = 0
Facërs ïëè (m - 1)(m - 2)(m - 3) = 0
The solutions areèm = 1, 2, 3
The general solution is
C¬e╣ + C½eì╣ + C¼eÄ╣
éS è The LINEAR, HOMOGENEOUS, CONSTANT COEFFICIENT, THIRD ORDER
DIFFERENTIAL EQUATION can be written ï ê form
Ay»»» + By»» + Cy» + D = 0
where A, B, C å D are constants.
è As with ê correspondïg SECOND ORDER differential
equation, an assumption is made that ê form ç ê solutions
is
y = e¡╣
Differentiatïg å substitutïg yields
(AmÄ + Bmì + Cm + D)e¡╣ = 0
As e¡╣ is never zero, it can be cancelled yieldïg ê
CHARACTERISTIC EQUATION
AmÄ + Bmì + Cm + D = 0
èèEvery CUBIC EQUATION with real coefficients has at least
ONE REAL ROOT.èThe oêr two roots are eiêr
a) BOTH REAL or
b) a COMPLEX CONJUGATE PAIR
èèIf all THREE ROOTS are REAL, êre are three subcases
a) 3 distïct roots, say l, m, n
The general solution is
C¬e╚╣ + C½e¡╣ + C¼eⁿ╣
b) 2 repeated roots, say m, m, å one oêr root,
say n.èThe general solution is
C¬e¡╣ + C½xe¡╣ + C¼eⁿ╣
c) 3 repeated roots, say m, m, m
The general solution is
C¬e¡╣ + C½xe¡╣ + C¼xìe¡╣
As with ê second order, non-homogeneous differential
equation, solvïg a third order, NON-HOMOGENEOUS differential
equation is done ï two parts.
1) Solve ê HOMOGENEOUS differential equation for a
GENERAL SOLUTION with THREE ARBITRARY CONSTANTS
2) Fïd ANY PARTICULAR SOLUTION ç ê NON-HOMOGENEOUS
differential equation.èAs disucssed ï CHAPTER 4, êre are
two maï techniques for fïdïg a particular solution.
A) METHOD OF UNDETERMINED COEFFICIENTS
This technique is used when ê non-homogeneous
term is
1)è A polynomial
2)è A real exponential
3)è A sïe or cosïe times a real exponential
4)è A lïear combïation ç ê above.
This technique is explaïed ï à 4.3 å can be
for ANY ORDER differential equation.
B) METHOD OF VARIATION OF PARAMETERS
This technique is valid for an ARBITRARY NON-HOMOGEN-
EOUS TERM.èIt does require ê ability ë evaluate
N ïtegrals for an Nth order differential equaën.
As ê order ç ê differential equation ïcreses,
ê ïtegrals become messier ï general.èThe second
order version is discussed ï à 4.4.
1èè y»»» - 4y» = 0
A)è C¬ + C½e╣ + C¼eúÅ╣
B) C¬ + C½eúì╣ + C¼eì╣
C)è C¬ + C½eú╣ + C¼eúÅ╣
D)è C¬ + C½e╣ + C¼eÅ╣
ü èèFor ê differential equation
y»»» - 4y» = 0
ê CHARACTERISTIC EQUATION is
mÄ - 4m = 0
This facërs ïë
m(mì - 4) = 0
å furêr ë
m(m - 2)(m + 2) = 0
This has ê solutions
m = -2, 0, 2
Thus ê general solution is
C¬ + C½eúì╣ + C¼eì╣
ÇèB
2 y»»» + 4y»» + y» - 6y = 0
A)è C¬e╣ + C½ì╣ + C¼eÄ╣
B)è C¬e╣ + C½ì╣ + C¼eúÄ╣
C)è C¬e╣ + C½úì╣ + C¼eúÄ╣
D)è C¬eú╣ + C½úì╣ + C¼eúÄ╣
ü èèFor ê differential equation
y»»» + 4y»» + y» - 6y = 0
ê CHARACTERISTIC EQUATION is
mÄ + 4mì + m - 6 = 0
This facërs ïë
(m - 1)(m + 2)(m + 3) = 0
This has ê solutions
m = -3, -2, 1
Thus ê general solution is
C¬e╣ + C½eúì╣ + C¼eúÄ╣
ÇèC
è3 y»»» + 5y»» - 2y» + 10y = 0
A)è C¬eÉ╣ + C½eú╣ + C¼eì╣
B)è C¬eúÉ╣ + C½e╣ + C¼eúì╣
C)è C¬eÉ╣ + C½eúá║ ╣ + C¼eáì ╣
D)è C¬eúÉ╣ + C½eúá║ ╣ + C¼eáì ╣
ü èèFor ê differential equation
y»»» + 5y»» - 2y» + 10y = 0
ê CHARACTERISTIC EQUATION is
mÄ + 5mì - 2m + 10 = 0
This facërs ïë
(mì - 2)(m + 5) = 0
The first facër is IRREDUCIBLE over ê rationals but does
facër over ê irrationals ë
(m - √2)(m + √2)(m + 5) = 0
This has ê solutions
m =è-5,-√2, √2
Thus ê general solution is
C¬eúÉ╣ + C½eú√ì ╣ + C¼e√ì ╣
ÇèD
4 6y»»» - 5y»» + y» = 0
A)è C¬ + C½eì╣ + C¼eÄ╣ è
B)è C¬ + C½eúì╣ + C¼eúÄ╣
C)è C¬ + C½e╣»ì + C¼e╣»Ä
D)è C¬ + C½eú╣»ì + C¼eú╣»Ä
ü èèFor ê differential equation
6y»»» - 5y»» + y» = 0
ê CHARACTERISTIC EQUATION is
6mÄ - 5mì + mè= 0
This facërs ïë
m(6mì - 5m + 1) = 0
å furêr ë
m(2m - 1)(3m - 1)
This has ê solutions
m = 0, 1/2, 1/3
Thus ê general solution is
C¬ + C½e╣»ì + C¼e╣»Ä
ÇèC
S 5 y»»» - 6y»» + 11y» - 6 = 0
A)è C¬e╣ + C½eì╣ + C¼eÄ╣
B)è C¬e╣ + C½eì╣ + C¼eúÄ╣
C)è C¬e╣ + C½eúì╣ + C¼eúÄ╣
D)è C¬eú╣ + C½eúì╣ + C¼eúÄ╣
ü èèFor ê differential equation
y»»» - 6y»» + 11y» - 6y = 0
ê CHARACTERISTIC EQUATION is
mÄ - 6mì + 11m - 6 = 0
This facërs ïë
(m - 1)(m - 2)(m - 3) = 0
This has ê solutions
m =è1, 2, 3
Thus ê general solution is
C¬e╣ + C½eì╣ + C¼eÄ╣
ÇèA
6 y»»» - 7y»» + 16y» - 12y = 0
A) C¬eì╣ + C½xeì╣ + C¼eÄ╣
B) C¬eì╣ + C½eúì╣ + C¼eÄ╣
C) C¬eì╣ + C½eì╣ + C¼eúÄ╣
D) C¬eì╣ + C½eúì╣ + C¼eúÄ╣
ü èèFor ê differential equation
y»»» - 7y»» + 16y» - 12y = 0
ê CHARACTERISTIC EQUATION is
mÄ - 7mì + 16m - 12 = 0
This facërs ïë
(m - 2)(m - 2)(m - 3) = 0
or
(m - 2)ì(m - 3) = 0
This has ê solutions
m =è2, 2, 3
Thus ê general solution is
C¬eì╣ + C½xeì╣ + C¼eÄ╣
ÇèA
7 12y»»» - 32y»» + 15y» + 9y = 0
A) C¬eÄ╣»ì + C½xeÄ╣»ì + C¼e╣»Ä
B) C¬eÄ╣»ì + C½xeÄ╣»ì + C¼eú╣»Ä
C) C¬eúÄ╣»ì + C½xeúÄ╣»ì + C¼e╣»Ä
D) C¬eúÄ╣»ì + C½xeúÄ╣»ì + C¼eú╣»Ä
ü èèFor ê differential equation
12y»»» - 32y»» + 15y» + 9y = 0
ê CHARACTERISTIC EQUATION is
12mÄ - 32mì + 15m + 9 = 0
This facërs ïë
(2m - 3)(2m - 3)(3m + 1) = 0
or
(2m - 3)ì(3m + 1) = 0
This has ê solutions
m =è3/2, 3/2, -1/3
Thus ê general solution is
C¬eÄ╣»ì + C½xeÄ»ì╣ + C¼eú╣»Ä
ÇèB
8è y»»» + 9 y»» + 27y» + 27y = 0
A) C¬e╣ + C½eÄ╣ + C¼eö╣
B) C¬eú╣ + C½eúÄ╣ + C¼eúö╣
C) C¬eÄ╣ + C½eÄ╣ + C¼eÄ╣
D) C¬eúÄ╣ + C½xeúÄ╣ + C¼xìeúÄ╣
ü èèFor ê differential equation
y»»» + 9y»» + 27y» +27y = 0
ê CHARACTERISTIC EQUATION is
mÄ + 9mì + 27m + 27 = 0
This facërs ïë
(m + 3)(m + 3)(m + 3) = 0
or
(m + 3)Ä = 0
This has ê solutions
m =è-3, -3, -3
Thus ê general solution is
C¬eúÄ╣ + C½xeúÄ╣ + C¼xìeúÄ╣
ÇèD
äèSolve ê ïitial value problem
â è For ê Initial Value Problem,
y»»» - 3y»» + 2y» = 0
y(0) = 6, y»(0) = 4, y»»(0) = 10
The general solution isè C¬ + C½e╣ + C¼eì╣
Differentiatïg å substitutïg 0 for x produces a system ç
three equations ï ê three constants.èSolvïg this system
gives ê solutionèè y = 5 - 2e╣ + 3eì╣
éSèèAs ê GENERAL SOLUTON ç a THIRD ORDER differential
equation has THREE ARBITRARY CONSTANTS, for an Initial Value
Problem ë completely specify which member ç this three
parameter family ç curves requires INITAL VALUES.
è The ståard ïitial values problem for a third order,
lïear, constant coefficient differential equation is
Ay»»» + By»» + Cy» + Dy = g(x)
èèèy(x╠) =è y╠
èè y»(x╠) =èy»╠
èèy»»(x╠) = y»»╠
èèAs with ê second order, ïital value problem, solvïg
this problem is a 2 step process
1)èèSolve ê differential equation ë produce a general
solution with three arbitrary constants.
2)èèCalculate ê first å second derivatives ç ê general
solution.èThen substitue ê ïital value ç ïdependent
variable, x╠ , ïë ê general solution å its first two
derivatives.èThis will produce a system ç 3 equations ï
ê three arbitrary constants.èSolvïg this system gives ê
values ç ê three constants which gives ê specific
solution ç ê ïitial value problem.
9è y»»» - 9y» = 0
y(0) = 4èy»(0) = -12èy»»(0) = 18
A) 2 + 3eúÄ╣ + e╣Ä╣
B) 2 + 3eúÄ╣ - eÄ╣
C) 2 - 3eúÄ╣ + e╣Ä╣
D) -2 + 3eúÄ╣ + e╣Ä╣
ü èèFor ê differential equation
y»»» - 9y» = 0
ê CHARACTERISTIC EQUATION is
mÄ - 9m = 0
This facërs ïë
m(m - 3)(m + 3) = 0
This has ê solutions
m =è0, -3, 3
Thus ê general solution is
èy = C¬ + C½eúÄ╣ + C¼eÄ╣
Differentiatïg
y» = -3C½eúÄ╣ + 3C¼eÄ╣
y»» =è9C½eúÄ╣ + 9C¼eÄ╣
Substitutïg ê ïital value ç ê dependent variable 0
èy(0) =è 4 = C¬ +èC½ +èC¼
y»(0) = -12 =èè- 3C½ + 3C¼
y»»(0) =è18 =èèè9C½ + 9C¼
Sovlïg this system ç equations yields
C¬ = 2è C½ = 3èC¼ = -1
Thus ê solution ç ê ïitial value problem is
y = 2 + 3eúÄ╣ - eÄ╣
ÇèB
10 y»»» - 6y»» + 11y» - 6y = 0
y(0) = -3èy»(0) = -8èy»»(0) = -26
A) 2e╣ + 3eì╣ + 4eÄ╣
B) 2e╣ - 3eì╣ + 4eÄ╣
C) -2e╣ + 3eì╣ - 4eÄ╣
D) -2e╣ - 3eì╣ - 4eÄ╣
ü èèFor ê differential equation
y»»» - 6y»» + 11y» - 6y = 0
ê CHARACTERISTIC EQUATION is
mÄ - 6mì + 11m -6 = 0
This facërs ïë
(m - 1)(m - 2)(m - 3) = 0
This has ê solutions
m =è1, 2, 3
Thus ê general solution is
èy = C¬e╣ + C½eì╣ + C¼eÄ╣
Differentiatïg
y» = C¬e╣ + 2C½eì╣ + 3C¼eÄ╣
y»» = C¬e╣ + 4C½eì╣ + 9C¼eÄ╣
Substitutïg ê ïital value ç ê dependent variable 0
èy(0) =è-3 = C¬ +èC½ +èC¼
y»(0) =è-8 = C¬ + 2C½ + 3C¼
y»»(0) = -26 = C¬ + 4C½ + 9C¼
Sovlïg this system ç equations yields
C¬ = -2è C½ = 3èC¼ = -4
Thus ê solution ç ê ïitial value problem is
y = -2e╣ + 3eì╣ - 4eÄ╣
ÇèC